s/r home  | issues  | authors  | 24 contents

Synthesis/Regeneration 24   (Winter 2001)


A Practical Exercise in How Scientific Evidence Must be Interpreted and Used
in Accordance with the Precautionary Principle and Sound Science




Horizontal Gene Transfer Happens

by Dr. Mae-Wan Ho, Institute of Science in Society



[Horizontal gene transfer is the transfer of genetic material between organisms and even species. Bacteria do this naturally. Genetic engineering increases the variety of DNA which is available for bacteria to transfer. Critics of the biotechnology industry contend that once genetically modified plants and animals are released into the environment bacteria and viruses can accelerate horizontal gene transfer and pass on harmful traits. Disease-bearing bacteria could pick up resistance to antibiotic drugs; crops modified with genes that kill common pests or make the crops immune to herbicides could have these traits passed on to less desirable plants, giving rise to "superweeds." Biotech supporters say this risk is unproved and exaggerated. Biologist Mae-wan Ho examines the evidence. —Henry Robertson]

At first, they said horizontal transfer of genes to unrelated species couldn't happen; then they said "just because it happens in the laboratory doesn't mean it happens in nature." Recently, Prof. Katz of Jena University found in field studies that genetically modified (GM) genes may have transferred from GM pollen to bacteria and yeast in the gut of baby bees (The Observer, May 28, 2000).


The GM construct or parts of it was found to have persisted for up to two years under field conditions...

But, researchers earlier found evidence of horizontal transfer of GM genes to soil bacteria in the field where GM sugar beet was planted, and this has been reported in the scientific literature. (1) Readers of ISIS News will note that there have already been several studies documenting the horizontal transfer of GM genes from GM plants to soil fungi and bacteria in the laboratory. (2)

In this article, I shall review a published study to show how the precautionary principle can be applied in practice to interpret and use scientific evidence responsibly and in accordance with sound science. German geneticists Frank Gebhard and Kornelia Smalla began a series of experiments in 1993 to monitor field releases of GM rizomania-resistant sugar beet (Beta vulgaris) for persistence of the GM construct in the soil and for horizontal gene transfer. They found that the GM construct persisted in the soil for at least two years after the plants were grown and harvested, and different parts of the GM construct may have transferred to unknown soil bacteria. The researchers are exemplary in documenting clearly their experimental material as well as the procedure, and I take pleasure in reporting their research in some detail. The GM sugar beet contained the following genes.

The authors are scrupulously careful not to interpret the results as proof that horizontal gene transfer has taken place. The results, however, are prima facie evidence of horizontal gene transfer. The failure to isolate the bacteria which have taken up the GM construct is not surprising, as over 99% of soil bacteria are not isolatable by current culture techniques, and this is one major limitation to detecting horizontal gene transfer in the field. The authors further state, "The presence of bacterial genes, promoters, terminators, or origins of vegetative replication in transgenic plants will enhance the probability of stable integration of DNA stretches based on recombination events [should transgenic DNA be taken up by the bacteria]." (pp. 270-1).


The valid use of scientific evidence is to set precaution, and not to set permissive standards for scientists and corporations to use life and our life-support system as one vast laboratory...

I have reviewed the scientific paper in detail as a practical illustration of how scientific evidence is to be used responsibly, in accordance with the precautionary principle, which is also sound science. The precautionary principle states that where there is reasonable suspicion of harm, scientific uncertainty or lack of scientific consensus must not be used to postpone preventative action. Uncertainty is the hallmark of any active knowledge system, which is what science is, as opposed to religious fundamentalism. And this is ultimately why the precautionary principle must be part and parcel of sound science. The valid use of scientific evidence is to set precaution, and not to set permissive standards for scientists and corporations to use life and our life-support system as one vast laboratory, as has been the case for the past 50 years.


There is already overwhelming evidence that horizontal gene transfer and recombination have created new bacterial and viral pathogens and spread drug and antibiotic resistance among the pathogens.

Gebhard and Smalla's paper does not provide positive proof of horizontal gene transfer that would stand up in a court of law, but it does provide reasonable suspicion horizontal gene transfer has occurred, especially as it corroborates previous laboratory investigations demonstrating that horizontal gene transfer. There is already overwhelming evidence that horizontal gene transfer and recombination have created new bacterial and viral pathogens and spread drug and antibiotic resistance among the pathogens. GM constructs consist predominantly of bacterial and viral genetic material as well as antibiotic resistance marker genes. To persist in ignoring horizontal gene transfer in risk assessment not only violates the precautionary principle, it violates all the tenets of sound science and responsible governance.

References

1. Gebhard, F. & Smalla, K. (1999). Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Microbiology Ecology 28, 261-272.

2. For a more recent review, read "Horizontal Gene Transfer - Hidden Hazards of Genetic Engineering" by Mae-Wan Ho, to be posted on the ISIS website.





Synthesis/Regeneration home page | Synthesis/Regeneration 24 Contents