s/r home  | issues  | authors  | 56 contents

Synthesis/Regeneration 56   (Fall 2011)

The Lesson of Fukushima

Nuclear Means Catastrophe

by Daniel Tanuro

We are once again faced with evidence that nuclear technology can never be 100% secure.

The risks are so frightening that the conclusion is obvious: it is imperative to abandon nuclear energy, and to do so as quickly as possible. This is the first lesson of the unfolding crisis at the Fukushima Daiichi nuclear power plant, one that raises absolutely fundamental social and political questions, requiring a real debate throughout society about an alternative to the capitalist model of infinite growth.

A dangerous technology

Windscale in 1957, Three Mile Island in 1979, Chernobyl in 1986, Tokai Mura in 2000 and now Fukushima. The list of accidents at nuclear power plants continues to grow. It simply could not be otherwise, and it is not necessary to be a doctor of nuclear physics to understand why.

A nuclear plant works in a similar way to a kettle, with the element in a kettle corresponding to the fuel rods in a nuclear plant. If there is no water in the kettle and the elements heat up, there is a problem, and in much the same way the central fuel rods must be continuously submerged in water. The steam produced by the resulting boiling water turns the turbines that generate electricity. The plant consumes large quantities of water, the circulation of which is ensured by pumps.

If we are to believe them, nothing similar could occur to plants based on good capitalist technology…

If the pumps fail, the water runs out and the overheated rods start to deteriorate. If water is not added quickly, the heat produced by the reaction is such that the rods melt and fall to the bottom of the tank (which corresponds to the chamber of a kettle). This tank is in turn enclosed in a double ring of security. We all recognize the outer silhouette of the reactor. If this does not withstand the intense heat of molten rods and cracks, radioactivity is released into the environment, with fatal consequences.

A fragile technology

The reaction that occurs in a power plant is a chain reaction: uranium nuclei are bombarded with neutrons, and when it absorbs a neutron, a uranium nucleus splits in two and releases a large amount of energy (nuclear fission) while also releasing more neutrons, and each of these can cause the fission of another uranium nucleus.

Once the reaction starts, it continues all by itself. The only way to control and monitor the temperature is to insert between the fuel rods bars made of alloy that can absorb neutrons without causing fission. This can cool the core of the reactor. But this cooling takes some time, during which the fuel rods must remain bathed in water, otherwise they might overheat.

The proponents of nuclear power repeat tirelessly that power plants are extremely safe, particularly because, in the case of failure of the mains supply, the pumps can be supplied with energy thanks to emergency generators. The accident in Fukushima shows that those assurances were not worth much because of the earthquake. There was no power to operate the pumps. The generators should have started automatically but, unfortunately, they were out of order, drowned by the tsunami.

…this risk is unacceptable because…it is the result of investment decisions made by small circles of people, focused on their profits

The cooling water was insufficient, as the fuel rods were exposed from 1.8 meters to over 3 (for a total length of 3.71 meters ). This overheating caused a chemical reaction (electrolysis of water), which produced hydrogen. The technicians then released the vapor to avoid the explosion of the tank, but hydrogen apparently then exploded in the reactor, causing the collapse of the dome of the building, and steam was released into the environment. This scenario was apparently repeated in a second reactor.

Just like Chernobyl

The distribution of fresh water having been interrupted by the tsunami, the technicians used the water from the nearby sea. Several US experts have said that this was typically an “act of desperation.” According to them, it evokes the vain attempts to avoid the melting of the core of the reactor at Chernobyl, when employees of the plant and heroic volunteers poured sand and concrete onto the reactor, paying with their lives. Six brave Japanese journalists armed with Geiger counters visited Futaba Town Hall, located 2 kilometers from the plant, and found that the radioactivity levels exceeded the measuring capacity of some of their devices!

As the French network Sortir du nucléaire said in a statement, “We are [supposed] to believe that a dramatically high level of radioactivity in a wide area around the plant does not have serious consequences for health.” We should not believe statements about immunity to the fallout: the precedent of Chernobyl showed that a radioactive cloud could contaminate vast regions. Everything depends on the force with which the particles are sent into the atmosphere. In the case of a very violent explosion, the radioactive elements may rocket to the altitude of jet streams, the strong winds that prevail at high altitudes. In that case, the fallout could affect areas far removed from Fukushima.

Two agonizing questions

The radioactivity comes mainly from two elements: Iodine 131 and Cesium 137. Both are highly carcinogenic, but the former has a lifetime in the atmosphere of about 80 days, while the second remains radioactive for about 300 years. On March 13, 2011, more than 200,000 people were evacuated. The authorities decreed an exclusion zone of 20 kilometers around the first reactor in Fukushima, and 10 kilometers of the latter. The presence of Cesium 137 is particularly worrying.

Precise information is lacking. Tokyo Electric Power Company (TEPCO) and the Japanese authorities are more than likely hiding part of the truth. The two most worrying questions which arise are whether the fission of the rods is controlled or if it continues, on the one hand, and also if the structure containing the tank will blow up. According to Ken Bergeron, a nuclear physicist who has worked on simulations of accidents in power plants, this structure “is certainly stronger than Chernobyl, but much less so than Three Mile Island.”

Specialists are not disguising their concern: “If they do not regain control of it all, we will move from partial melting to a full meltdown; it will be a total disaster,” said one expert (Le Monde, March 13, 2011).

But the worst of all would be the meltdown of the core of the second reactor, which exploded on March 13. Indeed, the fuel is MOX, a mixture of depleted uranium oxide and plutonium 239. Plutonium 239 is in fact a waste product of conventional uranium power plants. Its radioactivity is extremely high and its “half life” (the number of years needed to reduce by half the level of radioactivity) is estimated at 24,000 years. The Japanese are familiar with this element and its fearsome consequences: the nuclear bomb dropped on Nagasaki at the end of World War II was based on Plutonium 239.

An unacceptable risk

After the Chernobyl disaster, nuclear advocates have said that poor Soviet technology, poor safety standards and the bureaucratic nature of the system were the basis of the accident. If we are to believe them, nothing similar could occur to plants based on good capitalist technology, especially not in “democratic” countries where the legislature shall take all necessary security measures at all levels. Today we are seeing that these claims are not worth a damn.

Japan is a country of high technology. Fully aware of the seismic risk, the Japanese authorities have imposed strict standards for plant construction. Fukushima reactor 1 even included a double safety device, with some generators supplied with fuel and others battery operated. Neither has done any good, because the most sophisticated technology and most stringent safety standards will never provide an absolute guarantee, given the possibility of natural disasters or possible criminal acts (not to mention human error). We can reduce the risks of nuclear power, but we cannot remove them entirely. If the risks are relatively small but the number of plants increases, as is the case now, the absolute risk may increase.

…energy transition is only possible if energy demand decreases dramatically…

It is very important to make the point that this risk is unacceptable because it is of human origin, it is preventable, and it is the result of investment decisions made by small circles of people, focused on their profits without proper democratic consultation of the people. To write that “the nuclear accidents [sic] in Japan are far from costing as many lives as the tsunami,” as stated in Belgium’s Le Soir editorial (March 14), is to ignore the qualitative difference between unavoidable natural disaster and completely preventable technological catastrophe. To add that “like any complex industrial process, energy production from the atom has a substantial risk” also ignores the specifics of nuclear risk, which include the fact that this technology has the potential to wipe the human race off the face of the Earth. We must relentlessly hunt down and expose these types of excuses, which reflect the enormous pressure exerted at all levels by the nuclear industry lobby.

The risk on our own doorstep

Asked on the afternoon of March 12, France’s minister of industry Besson said that what is happening in Fukushima is “a serious accident, not a catastrophe.” To justify his own pro-nuclear policy, the British secretary of energy Chris Huhne found nothing better to say than to point out the weakness of the seismic risk in the UK, adding that it would draw lessons from what happens in Japan so that, ultimately, security will be even better.

These same pitiful arguments are used with variations by all governments that have decided either to stay the course with nuclear power (France), have been converted to it (Italy) or are being challenged by the pressure of public anti-nuclear opinion after Chernobyl (Germany, Belgium). Their objective is prevent a new mobilization of the anti-nuclear movement from torpedoing their ambitious plans for nuclear development on a global scale.

To call these arguments unconvincing would be something of an understatement. In western Europe, in particular, fear is more than justified. In France, a leader in the field of nuclear energy, reactors do not meet seismic standards. According to the Sortir du nucléaire, EDF [Electricité de France, the main French power utility] even falsified seismic data to avoid having to invest at least 1.9 billion euros to bring its reactors up to safety standards. Most recently, the courts dismissed an application for the closure of the Fessenheim (Alsace) plant, the oldest French nuclear reactor, also situated in an area of high seismic risk. In Belgium, the Doel and Tihange plants are designed to withstand earthquakes of magnitude 5.7 to 5.9 on the Richter scale. However, since the 14th century, these regions have experienced three earthquakes with a magnitude greater than 6.

It is also worth noting that there are no longer enough engineers with specialized training in power plant management, and the nuclear emergency plan only provides for evacuation of an area of 10 kilometers around a plant, which is totally inadequate. The prolongation of the active lives of the facilities is another concern. They are now planned to operate for 50 years, whereas incidents are increasing in plants that are only 20 years old. Thus, because of their age, 19 of France’s reactors have unresolved anomalies in their relief cooling systems: the very systems that failed in Japan.

A social choice

We have to abandon nuclear energy as completely and as quickly as possible. This is perfectly possible technically, and it should be noted in passing that the efficiency of nuclear power is very poor; two-thirds of the energy is dissipated as heat. The debate is primarily a political one, a debate society must have that ultimately poses a choice of the sort of civilization we want. That is the nub of the problem: we must phase out nuclear power and, simultaneously, abandon fossil fuels, the main cause of climate change. In just two generations, renewable energies must become our sole energy source.

However, the transition to renewables requires huge investments in energy-efficient solutions, so energy sources that emit greenhouse gas become more and more supplementary. In practice, energy transition is only possible if energy demand decreases dramatically, at least in developed capitalist countries. In Europe, this decrease should be about 50% by 2050. A reduction of this magnitude is not feasible without a significant reduction in material production and transportation. We must produce and carry less, otherwise the equation will not balance.

…all the responses to the climate challenge presented by capitalists rely on “sorcerer’s apprentice” technology…

Such a transition is impossible under the capitalist system, because the pursuit of profit and the whip of competition inevitably mean unbridled growth, i.e. capital accumulation, which inevitably leads to an increasing quantity of commodities, putting increased pressure on resources.

This is why all the responses to the climate challenge presented by capitalists rely on “sorcerer’s apprentice” technology, of which nuclear power is the flagship. The “bluemap” energy scenario of the International Energy Agency is telling in this regard: it proposes to triple the number of nuclear power stations by 2050, which would involve building a new gigawatt power plant every week. This is madness, pure and simple.

An alternative to this vicious system is more urgent than ever. It requires that we produce less, which means a radical reduction of working hours and therefore a redistribution of wealth. It ultimately requires the realization of the ecosocialist project, of a society producing for the satisfaction of real human needs, democratically determined, in accordance with the rhythms and the functioning of the ecosystem.

Without such an alternative, capitalist growth will always cause more disasters without providing for social needs. That is, ultimately, the terrible lesson of Fukushima.

Translated by International Viewpoint, from La preuve par Fukushima: pas de nucléaire sans catastrophe, published in La Gauche, March 14, 2011.

Daniel Tanuro, a certified agriculturalist and eco-socialist environmentalist, writes for La gauche, the monthly journal of the LCR-SAP, Belgian section of the Fourth International.

[12 dec 11]

Synthesis/Regeneration home page | s/r 56 Contents